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Self-dual models and mass generation in planar field theory
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We analyze, in three space-time dimensions, the connection between Abelian self-dual vector doublets and
their counterparts containing both an explicit mass and a topological mass. Their correspondence is established
in the Lagrangian formalism using an operator approach as well as a path integral approach. A canonical
Hamiltonian analysis is presented, which also shows the equivalence with the Lagrangian formalism. The
implications of our results for bosonization in three dimensions are discussed.
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[. INTRODUCTION parameters. These modes can be identified with those of the
original Maxwell-Chern-Simons doublet thereby revealing a
Self-dual models in three space time dimensions have cecomplete equivalence with the Lagrangian formalism. The
tain distinct features which are essentially connected with théiagonalization of the energy-momentum tensor is carried
presence of the Chern-Simons term which is both metric an@ut in Sec. IV. Following a method elaborated [@], the
gauge independent' An important variant of such a model |§p|n of the excitations is calculated. The hEI|C|ty states are

the topologically massive gauge thediy,2] where gauge * 1. corresponding to the two modes of the theory. An ap-
invariance coexists with the finite mass, single helicity andPlication to the bosonization of a doublet of massive Thirring
parity violating nature of the excitations. Its dynamics is Models in the long wavelength limit is discussed in Sec. V.
governed by a Lagrangian comprising both the Maxwell and”U" concluding remarks are left for Sec. V.
Chern-Simons terms. The equations of motion, when ex-
pressed in terms of the dual to the field tensor, manifest a
self-duality. An equivalent version of this model also exists, A. An operator approach
where the self-duality is revealed in the equations of motion In this section we shall consider a doublet of self- and
for the basic field 3-5]. More recently, another possibility : N

. . , .~ anti-self-dual models whose dynamics is governed, respec-
has been considered where, instead of the first derivativ

Chern-Simons term, a parity violating third derivative term isﬁvely, by the following Lagrangian densities:

Il. LAGRANGIAN ANALYSIS

added to the Maxwell terrib]. m._ 1
An intriguing fact, first noted if2] and briefly discussed Lsp= ﬁ—zjgﬂgﬂ—ifwxgﬂﬂvg)‘ 2.9
in [7-9], is that topologically massive doublets, with identi-
cal mass parameters having opposite sign, are equivalent to a m, 1
parity preserving vector theory with an explicit mass term. Lasp= £+=7fﬂf“+§euwf“6”f7‘. (2.2

This is the Proca model. The invariance of the doublets un-

der_the combined parity and fl_eld interchanges is thereby e property of self{or anti-selfyduality follows on ex-
easily un(_jerstood from the equwalent_ theory. Moreovgr th%loiting the equations of motiof8]. Note that the mass pa-
two theories of the doublet characterize self- and anti-selft; eters are different in the two cases. It has been suggested
dual solutions, depending on the sign of the mass term. Thfg] that the above models combine to yield the Maxwell-
final effective theory, which is a superposition of these solu-chern- Simons model with a conventional mass term. Here
tions, therefore hides these symmetries. , we quickly review that approach, which is based [d9)].

In this paper we will make a detailed analysis of a doubletrhg dea ‘is to construct an effective Lagrangian that will
of topologically massive theories with distinct mass param-paracterize the doublet. Obviously a simple minded addi-
eters. The resultant theory is a parity violating non-gauggjon, of the two Lagrangians will not yield anything. A new
vector theory with explicit as well as topological mass termsia|q will have to be introduced which will glue or solder the
This is demonstrated in Sec. Il in the Lagrangian formalismy,q | agrangians. The final or effective Lagrangian will not
using an operator approach. These results are then int€fqnain this new field. Later on we shall show in what sense
preted in the path integral approach. A Hamiltonian reduCynis approach can be understood as an “addition” of the two
tion of the effective theory, based on canonical tranSformaLagrangians. Consider the variation of the Lagrangians un-

tions, is performed in Sec. Ill. The diagonalization of the yar the local transformation
Hamiltonian reveals the presence of two massive modes,
which are a combination of topological and explicit mass S8t =89, =A ,(X). (2.3

The requisite variations are given by
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where the currents are defined as Introducing an antisymmetric tensor fieR},; transforming

as
J'%:m;h'“?re"“xﬁ&ahﬁ; h=f,g. (2.9

Next we introduce the soldering field,, transforming as

SW,= A, 2.6 it is possible to write a modified Lagrangian,

It is now simple to check that the following Lagrangian: L£=Lep+ Lasp— %Baﬁ(\];rﬁ(f)_,’_\];ﬁ(g))

L=L (9)+ L (F)=W,Q%(f)+I%(9)) 1
1 + Z(m+ + m,)BaﬁB"B (2.19
+ E(m+ +m_)W, W (2.7

that is invariant under Egg2.11) and (2.15; i.e., 6£=0.
is invariant under the transformations introduced earlier. Th&sjnce B, is an auxiliary field it is eliminated from Eg.

field W, plays the role of an auxiliary variable that can be (2,16 by using its solution. The final effective theory is just

eliminated by using the equation of motion, Eq. (2.9.
The above manipulations have shown that it is possible to
_ *F)+ I _ 2 glue the two Lagrangians by introducing an auxiliary vari-
“omy+mo V(D +3,(9)) 23 able. We could adopt this method to glue any two

. _ _ o Lagrangians; however the final result would not be local.
The final theory is manifestly invariant under the transfor-The local expression follows precisely because the self- and
mations containing Only the difference of the Orlglnal f|E|dS.anti_se|f_dua| nature of the Lagrangians engage in a cancel-

It is given by ing act. Note that the variations considered here lead to the
1 1 combinationf ,—g,, in the effective theory. By considering
L=—"F, FFA)+ =€, (M_—m,)A#g AN the variations with opposite signatures we would have been
4=~ 2 K led to the same effective theory but with the combination
1 fat9,. .
+ §m+m*AMAM (2.9 As announced earlier we now show how the above ap-

proach enables one to directly obtain the effective theory by
adding the two Lagrangians,

where

L=L, (F)+L_(g). (2.17

A =

1
—(f - .
2 o a9

This is the Maxwell-Chern-Simons theory with an explicit L=L,(Yym,+m_A+g)+L_(9)
mass term. A word about the degree of freedom count might
be useful. The Lagrangiani®.1) and(2.2) individually cor-
respond to single massive modes. The composite nm@d#!
corresponds to two massive modes. There is thus a matching

(2.10

Introducing the combinatio®.10, we find

m, 1
= 7(m++m_)A“AM+ z(m++m_)g"gﬂ

VAN
of the degree of freedom count. tymy+mo€,,\g%9"A%+m, ym, +m_A,g"
It is now possible to take a different variation of the fields, m,+m_
but the final result will be the same. To illustrate this con- + Tew)\A"a”A”. (2.18
sider, instead of E¢2.3), the following variations:
8f,=89,= ewﬁaa[\ﬁ‘ (2.1 Now g, behaves as an auxiliary variable. It is eliminated in

favor of the other variable by using the equation of motion.
The variations in the individual Lagrangians can be writtenThe end result reproduces EQ.9).

in terms of the parameteX as The compatibility of the equations of motion of the dou-
blet and the effective theory is next shown. From Egsl
6£¢=J’§ﬁ&aAﬁ, (212  and(2.2) the following equations are obtained:
where 1
g,u,:m_e;l,v)\avg)\ (219
J%¥=m;e*Prh, wh*F; h=f,g (2.13 -
and dgg"P=m_e*Pg,9, (2.20
h*8=g*hf— 9Bh«, (2149 and
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f——i JvfN
w m+6;w?\

(2.21

&ﬁfMB:_m+E’uaB(9afB. (222

Using the above sets of equations it follows that
=3 (f = 9uu) +(M_—my )€, d"(Fr—gh)

+m,m_(f )=0 (2.23

w9
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The other considerations discussed for the self-dual models
are all applicable here.

B. Path integral derivation

The above discussion has a natural interpretation in the
path integral formalism. The point is that the analysis related
to Egs.(2.17) and(2.18 shows that it is possible to obtain
the effective theory by an addition of the Lagrangians and
then identifying an auxiliary variable which is eventually
eliminated. Since the problem is Gaussian it is straightfor-

which is just the equation of motion for the effective La- \yard to interpret it in the path integral language. The elimi-

grangian(2.9) with the identification(2.10.

nation of the auxiliary variable just corresponds to a Gauss-

Now the self-dual model is known to be equivalent to thejapy jntegration over that variable. Let us therefore consider

Maxwell-Chern-Simons  theory[4,5]. Consequently the he following generating functionafor the doublet of self-
above analysis can be repeated for a doublet of Maxwellang anti-self-dual model.1) and (2.2),

Chern-Simons theories defined by the Lagrangian densities,

1
Lo(P)== 7 —F, F*(P)+5 e, P o"P" (2.24

1 1
Lo(Q)== g FuF(Q =5 Q" Q"
(2.29

Specifically, the model§2.24) and (2.25 are the analogues

of those given in Egs(2.1) and(2.2), respectively. For the
sake of comparison, the mass parametersare taken to be
identical in both cases.

ZzJ'dfMdgMex if d3x| £_(g)+ L. (f)

1

where a source has been introduced that is coupled to the
difference(2.10 of the variables. A relabeling of variables
as in(2.10 is made for which the Jacobian is trivial. The
path integral is now rewritten in terms of the redefined vari-

Now consider the variations of the Lagrangians under th%bIeA” andg,,

following transformations:

SP,=58Q,=A,. (2.26

"

Then it follows

SL-=J,,0"N" (2.27

where

~ 1
W)= = = (W) €W W=P,Q.
(2.29

Introducing theB,,, field transforming as Eq(2.19), it is
seen that the following combination

1
L=L(P)+L(Q) = 5B, (I +I%)

1( 1
- = — 4+ —

v
4\m,. m_ BB

(2.29

is invariant under the relevant transformatiof’&s15 and
(2.26.

As before, the auxiliary field,,, is eliminated from Eq.
(2.29 to yield the Lagrangiaii2.9) in terms of a composite
field which is the difference of the fields in the doublet,

A:

1
“ ﬁ(P#—Q#). (2.30

m,
7( \/m++m_A”+ g’u)z

Z=f dAMdgMex;{iJ d3x

1
+5 €, (VM +M_A#+g#)d"(Vm, +m_A*+g")

). (2.32

m_ 1 VAN
+7gﬂg“—§ew)\g“(9 gt +A, I~

Integrating over they,, variable yields

1
z:f dA,pxp(if A = ZF L FH"
1 Loy, Meme
+§(m,—m+)eMmA“a AN+ 5 AAREART L

(2.33

In the absence of sources this is just the partition function for
the Maxwell-Chern-Simons-Proca modgl9). Furthermore,

INote that the path integral following from the Hamiltonian ver-
sion [5] requires the factor dfy+(1/m.)e;0if;1] 0o
—(1/m_)€;0,9;] in the measure to account for the constraints.
Since this is a Gaussian problem the result of the path integral
remains unaltered even if these factors are not included. This is how
we choose to define the basic lagrangian path integral for the self-
and anti-self-dual models.
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the A, field in Eqg. (2.33 is related to the original doublet
fields by exactly the same equati¢®.10. This shows the f dA, da EXF{ f d?
equivalence of the results obtained by the two approaches.

It is equally possible to carry out a similar analysis for a 1 \
doublet of Maxwell-Chern-Simons theories. However, a +o(Memo)A A%+ S(M_—my e, AI"A
gauge fixing is necessary to account for the gauge invariance
of these theories. As was shown [i], through the use of
master Lagrangians, the basic field in the self-dual model can
be identified with the basic field in the Maxwell-Chern-
Simons theory defined in the covariant gauge. We therefortroducing a Stakelberg transformed fieldA,—A,
consider the generating functional obtained from Eqs+(m,m_)" 1(9 « and using the conservation of the source

1
X| ad, A= 2 F,,(A)F#(A)

(2.37

+A,J"

(2.24,(2.29: (i.e., 9,J*=0) “it follows that
" " = i 3 v 1 "
= | dP,dQ,é(d,P*)6(a,Q ) Z=| dA,exp i | d’x _ZFMVF +§(m+m_)AMA
1 A
X ex if d*| L_(P)+L.(Q) +(m_—my)e, \ARAT+A, I (2.39

(2.39 ization.
As before, the generating functional for the Maxwell-
Chern-Simons theory with an explicit mass term is obtained.
where, as before, a coupling with an external source has beethe connection of the basic field, with the original dou-
done with the d|fferenCé2 3@ of the variables. Because of blet,of course, remains the same as in 33]30)
the gauge invariance of the integrand, the sourgeshould

1
+——(P,—Q,)J*

where the integral oves has been absorbed in the normal-
m,+m_

be conserved. . . . . IIl. HAMILTONIAN REDUCTION AND CANONICAL
To perform the path integration, a renaming of variables
. . . T TRANSFORMATIONS
according to Eq(2.30 is done for which the Jacobian is
trivial. Then, The results of the previous section were achieved in the

Lagrangian formulation by combining the doublet to yield
u u the composite model. A complementary viewpoint will now
= | dA.dQ,8(d,A%)5(3,Q%) be presented in the Hamiltonian formulation. By solving the

constraint, the Hamiltonian of the model is expressed in term
’{f 3 of a reduced set of variables. Next, by means of a canonical
Xexpi | d°x
1 1 v
AT FulQF(Q) nonical transformations to diagonalize a Hamiltonian is of
course well known and appears in different versions and dif-
). (2.39 m -m,=0
m,.m_=m? (3.2

—_—— v - . - .
am._ (M +m_)F,,(AF*(A) transformation, the Hamiltonian gets decomposed into two
vmie+m_ ferent situations. More recently, in the context of the La-

distinct pieces, which correspond to the Hamiltonians of the
Maxwell-Chern-Simons doublet. This technique of using ca-
- - mv / M AV AN
2m_ Fu(AFH(Q)+m, +m_e,,\Q“d"A grangian formalism discussed in Sec. Il A, it has been devel-
oped in[11]. Defining a new set of parameters,

1
5 (me+ mM_) €, nALI"ANA J#

Performing the integral over th@,, variables yields

the Lagrangian(2.9) takes the form
= f dA,8(9,A")

><exp( [ f d®x

1
+ E(m_ —m. )€, \ALIAN A IH

L= L F.F*+ 0 A*GAN+ m2A A*. (3.2
1 1 - 4 M 2 GMV)\ d 2 Tu . ( . )
— P (AR (A + 5 (m m)A,A

The canonical momenta are

). (2.36 EYe
A

0
2

F0i+

Express the delta function in the measure by an integral over
a variablea: while
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7o~0 (3.4)

is the primary constraint. The canonical Hamiltonian is given

by
1 2 2 1 2 02 2 2 272
+f d’xA,Q (3.5
where
0
Q:&iﬂi_—fij&iA]‘_monwo (36)

2

is the secondary constraint. Eliminating the multiplieg
from Eq. (3.5 by solving the constraint3.6) we obtain

92

2" g

02
— +m?
2 m

Al

7Ti2+ Fizj-l—

1
— 2
H—zfdx

- 06iin7Tj

1 2 2
+ o | dX[(dimi) — 697 €md)Am].
2m

3.7

Making the canonical transformations in terms of the new

canonical pairs ¢, 7,) and (8,7),

A= €;: +B)+ — — —
i \/4m2+ o2 ij \/_(92((1 B) om 2 &Z(ﬂ-a 77,8)
o VAmP+6? 9 P a;

= am €jj \/_—(92(7Ta Wﬁ) m\/ﬁ(a’_ﬂ)

(3.9
the Hamiltonian decouples into two independent pieces,

H(A,m)=H(a,7,)+H(B,7p) (3.9

where

1
16m?
VAm?+ 6%+ 6

Jam?+ 62

,(Nam*+62=0)
+ M ————| dXa

Jam?+ 62

H(a,m,)= VAm?+ 02(\JAm?+ 02—0)f d?x72

+ d2x (9, )2

PHYSICAL REVIEW D63 125008

1
16m?
N Jam?+ 62— ¢

VaAm? + 62
(VAm?+ 6%+ 0)
+m————| d*
\/4m2+ 62

To recast these expressions in a familiar form, a trivial
scaling is done,

, 1 Nam*+e* 2\/4m2+02+6 )
—

H(B,mp) = VAM? + 6%(\J4m*+ 67+ 0)f d?xm
f d*x(d;B)

B (3.10

A — 5 ———a, T, Ty
2 \Jam?+ 6%+ 0 Vam?+ 62
g 1 Vam*+6° 8 2\/4m2+ 6°—0 ,
sV, Ty 2——F—T7
2 JamZ+ g?— 0 P77 Jamz 2 P
(3.11

so that

1
H(a,wa>=5J d?X[(dya)?+ o+ m’ o?]

H(,B,WB)Z%f d?X[(,8)*+ m5+m> B2 (3.12

B /2+ 6°_0
mi = m Z_'_E

These relations show that the theory possesses two massive
modes with massn, andm_ which satisfy the Klein Gor-
don equation. Furthermore since. in Eq. (3.13 are the
solutions to the set3.1), these can be identified with the
corresponding mass parameters occurring in the Maxwell-
Chern-Simons doublg®.24) and (2.25. The above Hamil-
tonians are indeed the reduced expressions obtained from
Egs.(2.25 and(2.24), respectively. The canonical reduction

of the Maxwell-Chern-Simons theory has been doné2ih

but we present it here from our viewpoint for the sake of
completeness. Let us, for instance, consider the Lagrangian
(2.24.2 The multiplier A, enforces the Gauss constraint,

with

(3.13

m_
Q=0iﬂi——eij&iAj~0

5 (3.19

where @ ,7') is a canonical set. The Hamiltonian on the
constraint surface is given by

1
| 42
H 2de

2

2 1 2 m- 2
7Ti+§Fij+m*€ij7TiAj+TAi .

(3.19

2The variable P, for convenience, is now called A.
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Next, consider the canonical transformation, ries with distinct mass parametars. . There is a complete
correspondence between the Lagrangian and Hamiltonian
d; d; formulations.
A= —,_—(?27704- €jj —_—(923

IV. THE ENERGY MOMENTUM TENSOR AND SPIN
d, di As emphasized ih2], spin in 2+ 1 dimensions cannot be
= O— e —2 (3.16 . "
= =3 €ij \/_—(927713 . properly identified from only the angular momentum opera-
tor since it does not conform to the conventional algebra. It

is essential to consider the complete energy momentum ten-
gor. Incidentally, althouglx and g in Eq. (3.12) satisfy the

where (0, 7,) and (8, ) form independent canonical pairs.
Since this is a gauge theory, a gauge fixing is imposed. W

take the standard Coulomb gauge, Klein-Gordon equation, these canqot be regarded as scalars
due to presence of the factaf— 42 in the transformations
3,A;=0 (3.17  (3.8. A complete analysis of the energy momentum tensor

will be done which unambiguously determines the spin of
The presence of the gauge, together with the constraithe excitations. The energy momentum tensor following
(3.14), modifies the canonical structure of th&, () fields;  from Eq.(3.2) is given by
i.e. their brackets are no longer canonical. The modified al-
gebra can be obtained either by the Dirac algorifd®| or,
as done here, by just solving the constraints. Their solution = agw—gwﬁ
leads to the following structure:

=—FFi+m?A A,
A= €;; &j B 1 m2
I I a a
= + 7 9uFagF A S OuAA" (4.2)
_ Mm% 9 The discussion of the Hamiltonian has already been done.
i 2 J—2 (92'8 G =2k The momentum is given by
(3.18
= 2 = 2y(—F A Fl 2 :
which satisfies a nontrivial algebra, P J d*xB J dX(=FoiFi+m"AcA). (4.9
30, To pass over to the reduced variablésg, is first eliminated
[Ai(X),m(y)]=1| =&+ —| 8(x=y) by using the constrain®.6). Next, the canonical transforma-
d tions (3.8) and(3.11) are applied. This leads to the diagonal
form,
om_
[mi(0),m(y)]=~i - € 8(x—Y). (3.19
Pi = f dZX[ 7Ta(9ia+ Wﬁ(?lﬁ] (43)

The same result follows by replacing the Poisson bracket
by the Dirac bracket. Using Ed3.18 the reduced Hamil- The rotation generator is given by
tonian is obtained from Eq3.15),

1 e 2, 2. 2 0 Mij:f d*X[x;00; = X;O0i] (4.9
H=§f d?x[(d;B8)*+ mg+mZ 2] (3.20
which, following the same techniques, is put in the diagonal

which has exactly the same structure as the second relation form,
Eq. (3.12. Likewise the other Maxwell-Chern-Simons

theory with a couplingn, can be reduced to the first relation )

in Eq.(3.12. It might be mentioned that the two Lagrangians M;; :f dX[ (X7 dja— X o di )

(2.24) and (2.25 differ not only in the respective mass pa-

rameters, but also in the signature of the Chern-Simons term. + (Xj7d; B—Xjmpdi B)]. (4.9

However a scaling argument shows that, apart from the field _ _ _

dependencies, these are connectechby->—m_ . Since the Both the translation and rotation generators have their ex-

Hamiltonian is quadratic in the mass term, this sign differ-pected forms with the fields and 8 transforming normally.

ence therefore does not affect the result. Using the inverse transformation of E@B) it is seen that
Thus the reduced Hamiltonian of the Maxwell-Chern-the original fieldA; also transforms normally,

Simons theory with a mass term is the sum of the reduced )

Hamiltonians of a doublet of Maxwell-Chern-Simons theo- [Aj,Pi]=1diA;
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A M 1=1(%0Ac— X 9iA— SikA: + i Ay k
[ k I]] ( i 0k ik ik jk |) (4_6) ¢=tal’l_1 k_j) (4-13)
Finally, the boosts are considered and it is found that th§; jeads to the following expressions for the boosts and rota-
diagonal form is given by tion generator:
_ 2 2 [ -
MOi—tf d X®0i‘f 4% ®00 Mm:Ef ke (k)[a" (k) Fa(k)|
=tJ d’xmr &ia—EJ’ dZXXi[(&ja)z-l- 772+mia2] 2 1 kat(kalk
2 +Eijjd w(k)+m+ Ja( )a( )
2 9 2 i -
tmee | dXm, 2 tt d*xmgd; B + Ef d?kw(k)|bT(k) d;b(k)|
1L d?xx[(9;8)%+ 75+ m? B2 d%k ! kib'(k)b(k) (4.1
5 X%[(d;8)"+ m+mZ 7] — €] wFm_ N (k)b(k)  (4.19
—m_e; | dxmy| 2|8 (4.7 M;; = deTkla k
~€ij Bl 2] P . ij = €ij a'( )i_ﬁa( )
The boost generator has extra factors which clearly show that d2kat
X — a'(k)a(k)
a and B do not transform as scalars. These extra pieces are
however essential to correctly reproduce the usual transfor- 13
mation of the original vector field, , Ty —
g i +€) fdzkb (k)- (wb(k)
[A] ,Mol]:|(t0”|AJ_X|a0AJ+ 5”Ao) (48)
2) t
where recourse has to be taken to the solution of the con- +j d*kbi(k)b(k) (.19
straint(3.6) to obtain the final structure involving,. )
The presence of the abnormal terms in the boost leads tohich satisfy the Poincaralgebra
a zero momentum anomaly in the Poincatgebra, )
[Moi ,Mgj]1=iM;;. (4.19
[Moi,Mgj]=i(Mj; + €;A) (4.9 . . . .
An inspection of the rotation generator shows that it com-
where prises of two distinct terms denoted by the parentheses. The
first factor in each corresponds to the usual orbital part. The
2 additional pieces show that the spin of the excitations asso-

m? 2 m, 2 m?
A= E( j d*xa +E( f d’xm, | — E( f d*xp ciated witha and g are, respectively;-1 and+ 1. This also
happens in the case of the Maxwell-Chern-Simons theory

m_ ) 2 [2]. The difference from the spin of the excitations in the
- E( f dxmg (4.10 Maxwell-Chern-Simons theory is noteworthy. There the sign
of the spin is fixed by the sign of the coefficient of the
Following exactly the same steps as[R] it is possible to Chern-Simons parameter. In the present case it is seen from
remove this anomaly, simultaneously fixing the spin of theEq. (3.13 that, irrespective of the sign of, the mass pa-
excitations. Consider the mode expansions, rameteram.. are always positive. Hence the sign of the spin
associated witlw and 8 is also uniquely determined.
Note that form,=m_, the theory becomes parity con-

d?k . .
a(x)=fﬁ[a(k)e"k‘HaT(k)e'k‘x] serving. This is the case when the Maxwell-Chern-Simons
mV20(K) doublet with identical mass yields the Proca mdde8].

2k

— —ik-xy T ik-x V. APPLICATION TO 3D BOSONIZATION
p00= | 5 osTblge  boek ) APPLICATION TO 3 BOSONIZAT

(4.11 Bosonl_zanon in higher dlmen5|ons_ is nel_ther C(_)mplete nor
exact as in the case of two space-time dimensions. This is

suitably modified by the phase redefinitions, related to the fact that the fermion determinant in dimensions
greater than two cannot be exactly computed. In general it

a—e 'Ya, b—e'%b (4.12  has a nonlocal structure. However, for the large fermion
mass limit in three space-time dimensions, a local expression

where emerges[2,13]. This has been exploited to discuss the
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bosonization of massive fermionic models in the long wave- Y
length limit[14]. Here we analyze the bosonization of a dou- Aﬂz%(fﬂ—gﬂ). (5.5
blet of such models: To be specific, consider the following VAm(NL+ND)

three dimensional massive Thirring models: _ _
The Lagrangian5.4) can be regarded as a bosonized La-

— )\i _ grangian obtained from the following massive Thirring
£+=l/f(ll9+m+)l/f—7(llfmllf)2 model:
2 L=V (ih—m)¥ xzdi V)2 (5.6
— g =V({id-m¥——(Vy .
Lo=x(i0=m)x=— (xvux)* (5.1 20

in the weak coupling and large mass limit. The relations of
the parameters occurring in the above Lagrangian and Eq.
(5.4) are given by

The respective partition functions, after eliminating the
four fermion interaction by introducing auxiliary fields, are

given by
8r (A2 —\2%)
_ _ — m= o7 W+ A-)
Z+=f dwdwdfﬂex;{lf d3x( Ylid+me+N. By 3 a\2\2

To show this we first observe that the original weak cou-

_ _ pling involving A ; and\ _ leads to a weak. Secondly, it
Z,:J dXdngﬁeXF<ij d3| x(i6—m_+N_@)x also implies the large mass limit. In other words the same
approximation prevails. The fermion determinant, similar to
1 Eq. (5.9, but evaluated to the next to leading order, includes
+§9u9”) : (5.2 poth the Chern-Simons term and the Maxwell tefirb].

Specifically, this is written as
The fermion determinant can be expressed, in the large

mass limit, by a local series involvingl{m) [2,13,19. Fur- = EA“A _ )\_ZEMV)\AMVAA

thermore, for weak coupling we need to consider only the 2 k8w

two legs fermion loop. The leading long wavelength term in )

this quadratic approximation is the Chern-Simons three n A FwE 4ol - (5.9
form. Thus the effective bosonized Lagrangians of the dou- 24mm wy m2 '

blet are given by

where we have identified the auxiliary field necessary to sim-
plify the four fermion interaction witlA, . This is exactly in
keeping with the spirit of obtaining E5.3) from Eq.(5.2),
except that the fermion determinant has been evaluated to the
A2 1 1 next to leading order in the inverse mass expansion. By mak-
L_=— —ewxg“anML Egﬂg“+0 E) ing the following scaling:

8
(5.3

2

A2 o L 1
£+:%6ﬂy>\f”§ f +§fo'u+O E

4
A A 5.9
where the difference in the sign of the Chern-Simons piece is w NaN_ 5.9

a result of a similar feature in the mass terms of the original

Lagrangiang5.1). this reproduces Eq5.4), with the identification(5.7). This
Using our previous results, the doublet®f and£_, as  establishes the connection between Efsl) and(5.6) since

defined in Eq.(5.3), can be represented by an effective La-Eq. (5.4) is their common origin.

grangian, which is just the Maxwell-Chern-Simons theory The implications of the above analysis are now discussed.

with an explicit mass term, In the quadratic approximation, a doublet of massive
Thirring models in the leading long wavelength limit
1 2 bosonizes to the effective Lagrangiéh4). The same effec-
L=— ZFWF“"(A) + W()\i —A_—2) €, \AFIAN tive theory, under similar approximations and with the iden-

+ tification (5.7), also characterizes a single massive Thirring

872 model, but where the calculation of the fermion determinant
m A AH (5.4) is carried out till the first nonleading term. In this sense,
A2N2 K therefore, a doublet of massive Thirring models can be ap-
proximated by a single similar model. There is also a match-
where ing in the degree of freedom count.

+
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VI. CONCLUSIONS [7,8]. This result is reproduced here by putting. =m_ .

We have considered the description of a doublet of self- For the more general case where the Maxwell-Chem-

dual models with distinct topological mass parameters hav_—S'mons doublet has different topological masses, parity

ing opposite signs. The difference in sign implies that the'S no Ionger conserved, aIFhough_the other considerations re-
doublet comprises a self-dual and an anti-self-dual modefMan valid. Hence the kinematics of such a doublet re-
Specifically, this was a pair of the gauge invariant Maxwell-S€mbles a non gauge parity violating theory with two mas-
Chern-Simons theory2] or, equivalently, its dual gauge Sive modes having spir-1. This turned out to be the
variant version[3-5]. The effective theory, characterizing Maxwell-Chern-Simons theory with an explicit mass term,
such a doublet, turned out to be the Maxwell-Chern-Simon&s elaborated here in details. An added bonus of this equiva-
theory with an explicit mass term. The basic field of thelence is that it led to fresh insights into the bosonization of
effective theory was just the difference of the doublet vari-massive fermionic models. This was explicitly shown for a
ables. doublet of massive Thirring models, but it can be done for
A canonical analysis of the effective theory was done.other examples like QED in three dimensions.
Based on a set of canonical transformations, the Hamiltonian Recently there have been certain discussiphg,18
was diagonalized into two separate pieces. The two massiwehich regard a mass term in a gauge theory either as a con-
modes were found to be a combination of the topological andentional mass term or, equivalently, as a gauge fixing term.
explicit mass parameters. In fact these were identified withn fact, Maxwell theory in the covariant gauge and the Proca
the two modes of the Maxwell-Chern-Simons doublet thatmodel were shown equivalent from the viewpoint of quan-
led to the effective theory. In this way a correspondence watum Becchi-Rouet-Stora-TyutitBRST) symmetry[17,18.
established between the Lagrangian approach of combiningere we find that the superposition of a pair of Maxwell-
the doublet into an effective theory and the Hamiltonian ap-Chern-Simons theories in the covariant gauge leads to an
proach of decomposing the latter back into the doublet. Thexplicit mass generation. This suggests a possible connection
spin of the excitations was obtained from a complete studyetween these different approaches.
of the Poincaralgebra by adopting the method advocated in  The extension of these findings to higher dimensions or
[2]. non-Abelian versions would be welcome. Of course fér 4
When the Maxwell-Chern-Simons doublet has identical—1 dimensions where self-duality is definable, this exten-
topological masstm, parity is conserved since one degreesion is straightforward in the Abelian case. For non-Abelian
of freedom is just mapped to the other. The spin carried byheories, the superposition principle does not work as in the
the two degrees of freedom 81. This has the same kine- Abelian theory. Using some special properties of two dimen-
matical structure as the Proca theory which is a parity consions, the Wess-Zumino-Witte@WWZW) non-Abelian dou-
serving theory with two massive modes having spii  blet was treated ifil9]. But for general dimensions, the non-
[16,2]. An explicit demonstration of this was provided earlier Abelian analysis remains an open issue.
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