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Self-dual models and mass generation in planar field theory
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We analyze, in three space-time dimensions, the connection between Abelian self-dual vector doublets and
their counterparts containing both an explicit mass and a topological mass. Their correspondence is established
in the Lagrangian formalism using an operator approach as well as a path integral approach. A canonical
Hamiltonian analysis is presented, which also shows the equivalence with the Lagrangian formalism. The
implications of our results for bosonization in three dimensions are discussed.
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I. INTRODUCTION

Self-dual models in three space time dimensions have
tain distinct features which are essentially connected with
presence of the Chern-Simons term which is both metric
gauge independent. An important variant of such a mode
the topologically massive gauge theory@1,2# where gauge
invariance coexists with the finite mass, single helicity a
parity violating nature of the excitations. Its dynamics
governed by a Lagrangian comprising both the Maxwell a
Chern-Simons terms. The equations of motion, when
pressed in terms of the dual to the field tensor, manife
self-duality. An equivalent version of this model also exis
where the self-duality is revealed in the equations of mot
for the basic field@3–5#. More recently, another possibilit
has been considered where, instead of the first deriva
Chern-Simons term, a parity violating third derivative term
added to the Maxwell term@6#.

An intriguing fact, first noted in@2# and briefly discussed
in @7–9#, is that topologically massive doublets, with iden
cal mass parameters having opposite sign, are equivalen
parity preserving vector theory with an explicit mass ter
This is the Proca model. The invariance of the doublets
der the combined parity and field interchanges is ther
easily understood from the equivalent theory. Moreover
two theories of the doublet characterize self- and anti-s
dual solutions, depending on the sign of the mass term.
final effective theory, which is a superposition of these so
tions, therefore hides these symmetries.

In this paper we will make a detailed analysis of a doub
of topologically massive theories with distinct mass para
eters. The resultant theory is a parity violating non-gau
vector theory with explicit as well as topological mass term
This is demonstrated in Sec. II in the Lagrangian formali
using an operator approach. These results are then i
preted in the path integral approach. A Hamiltonian red
tion of the effective theory, based on canonical transform
tions, is performed in Sec. III. The diagonalization of t
Hamiltonian reveals the presence of two massive mod
which are a combination of topological and explicit ma
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parameters. These modes can be identified with those o
original Maxwell-Chern-Simons doublet thereby revealing
complete equivalence with the Lagrangian formalism. T
diagonalization of the energy-momentum tensor is carr
out in Sec. IV. Following a method elaborated in@2#, the
spin of the excitations is calculated. The helicity states
61, corresponding to the two modes of the theory. An a
plication to the bosonization of a doublet of massive Thirri
models in the long wavelength limit is discussed in Sec.
Our concluding remarks are left for Sec. VI.

II. LAGRANGIAN ANALYSIS

A. An operator approach

In this section we shall consider a doublet of self- a
anti-self-dual models whose dynamics is governed, resp
tively, by the following Lagrangian densities:

LSD5L25
m2

2
gmgm2

1

2
emnlgm]ngl ~2.1!

LASD5L15
m1

2
f m f m1

1

2
emnl f m]n f l. ~2.2!

The property of self-~or anti-self-!duality follows on ex-
ploiting the equations of motion@8#. Note that the mass pa
rameters are different in the two cases. It has been sugge
@9# that the above models combine to yield the Maxwe
Chern- Simons model with a conventional mass term. H
we quickly review that approach, which is based on@10#.
The idea is to construct an effective Lagrangian that w
characterize the doublet. Obviously a simple minded ad
tion of the two Lagrangians will not yield anything. A new
field will have to be introduced which will glue or solder th
two Lagrangians. The final or effective Lagrangian will n
contain this new field. Later on we shall show in what sen
this approach can be understood as an ‘‘addition’’ of the t
Lagrangians. Consider the variation of the Lagrangians
der the local transformation

d f m5dgm5Lm~x!. ~2.3!

The requisite variations are given by

dL75J7
m Lm ~2.4!
©2001 The American Physical Society08-1
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where the currents are defined as

J7
m 5m7hm7emab]ahb ; h5 f ,g. ~2.5!

Next we introduce the soldering fieldWm transforming as

dWm5Lm . ~2.6!

It is now simple to check that the following Lagrangian:

L5L2~g!1L1~ f !2Wm„J1
m ~ f !1J2

m ~g!…

1
1

2
~m11m2!WmWm ~2.7!

is invariant under the transformations introduced earlier. T
field Wm plays the role of an auxiliary variable that can
eliminated by using the equation of motion,

Wm5
1

m11m2
„Jm

1~ f !1Jm
2~g!…. ~2.8!

The final theory is manifestly invariant under the transf
mations containing only the difference of the original field
It is given by

L52
1

4
FmnFmn~A!1

1

2
emnl~m22m1!Am]nAl

1
1

2
m1m2AmAm ~2.9!

where

Am5
1

Am11m2

~ f m2gm!. ~2.10!

This is the Maxwell-Chern-Simons theory with an explic
mass term. A word about the degree of freedom count m
be useful. The Lagrangians~2.1! and ~2.2! individually cor-
respond to single massive modes. The composite model~2.9!
corresponds to two massive modes. There is thus a matc
of the degree of freedom count.

It is now possible to take a different variation of the field
but the final result will be the same. To illustrate this co
sider, instead of Eq.~2.3!, the following variations:

d f m5dgm5emab]aLb. ~2.11!

The variations in the individual Lagrangians can be writt
in terms of the parameterL as

dL75J7
ab]aLb , ~2.12!

where

J7
ab5m7eabmhm7hab; h5 f ,g ~2.13!

and

hab5]ahb2]bha. ~2.14!
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Introducing an antisymmetric tensor fieldBab transforming
as

dBab5]aLb2]bLa ~2.15!

it is possible to write a modified Lagrangian,

L5LSD1LASD2
1

2
Bab

„Jab
1 ~ f !1Jab

2 ~g!…

1
1

4
~m11m2!BabBab ~2.16!

that is invariant under Eqs.~2.11! and ~2.15!; i.e., dL50.
Since Bab is an auxiliary field it is eliminated from Eq
~2.16! by using its solution. The final effective theory is ju
Eq. ~2.9!.

The above manipulations have shown that it is possible
glue the two Lagrangians by introducing an auxiliary va
able. We could adopt this method to glue any tw
Lagrangians; however the final result would not be loc
The local expression follows precisely because the self-
anti-self-dual nature of the Lagrangians engage in a can
ing act. Note that the variations considered here lead to
combinationf m2gm in the effective theory. By considering
the variations with opposite signatures we would have b
led to the same effective theory but with the combinati
f m1gm .

As announced earlier we now show how the above
proach enables one to directly obtain the effective theory
adding the two Lagrangians,

L5L1~ f !1L2~g!. ~2.17!

Introducing the combination~2.10!, we find

L5L1~Am11m2A1g!1L2~g!

5
m1

2
~m11m2!AmAm1

1

2
~m11m2!gmgm

1Am11m2emnlgm]nAl1m1Am11m2Amgm

1
m11m2

2
emnlAm]nAl. ~2.18!

Now gm behaves as an auxiliary variable. It is eliminated
favor of the other variable by using the equation of motio
The end result reproduces Eq.~2.9!.

The compatibility of the equations of motion of the do
blet and the effective theory is next shown. From Eqs.~2.1!
and ~2.2! the following equations are obtained:

gm5
1

m2
emnl]ngl ~2.19!

]bgmb5m2emab]agb ~2.20!

and
8-2
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SELF-DUAL MODELS AND MASS GENERATION IN . . . PHYSICAL REVIEW D63 125008
f m52
1

m1
emnl]n f l ~2.21!

]b f mb52m1emab]a f b . ~2.22!

Using the above sets of equations it follows that

2]n~ f mn2gmn!1~m22m1!emnl]n~ f l2gl!

1m1m2~ f m2gm!50 ~2.23!

which is just the equation of motion for the effective L
grangian~2.9! with the identification~2.10!.

Now the self-dual model is known to be equivalent to t
Maxwell-Chern-Simons theory@4,5#. Consequently the
above analysis can be repeated for a doublet of Maxw
Chern-Simons theories defined by the Lagrangian densit

L2~P!52
1

4m2
FmnFmn~P!1

1

2
emnlPm]nPl ~2.24!

L1~Q!52
1

4m1
FmnFmn~Q!2

1

2
emnlQm]nQl.

~2.25!

Specifically, the models~2.24! and ~2.25! are the analogue
of those given in Eqs.~2.1! and ~2.2!, respectively. For the
sake of comparison, the mass parametersm7 are taken to be
identical in both cases.

Now consider the variations of the Lagrangians under
following transformations:

dPm5dQm5Lm . ~2.26!

Then it follows

dL75Jmn
7 ]mLn ~2.27!

where

Jmn
7 ~W!52

1

m7
Fmn~W!6emnlWl; W5P,Q.

~2.28!

Introducing theBmn field transforming as Eq.~2.15!, it is
seen that the following combination

L5L2~P!1L1~Q!2
1

2
Bmn~J1

mn1J2
mn!

2
1

4 S 1

m1
1

1

m2
DBmnBmn ~2.29!

is invariant under the relevant transformations~2.15! and
~2.26!.

As before, the auxiliary fieldBmn is eliminated from Eq.
~2.29! to yield the Lagrangian~2.9! in terms of a composite
field which is the difference of the fields in the doublet,

Am5
1

Am11m2

~Pm2Qm!. ~2.30!
12500
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The other considerations discussed for the self-dual mo
are all applicable here.

B. Path integral derivation

The above discussion has a natural interpretation in
path integral formalism. The point is that the analysis rela
to Eqs.~2.17! and ~2.18! shows that it is possible to obtai
the effective theory by an addition of the Lagrangians a
then identifying an auxiliary variable which is eventual
eliminated. Since the problem is Gaussian it is straightf
ward to interpret it in the path integral language. The elim
nation of the auxiliary variable just corresponds to a Gau
ian integration over that variable. Let us therefore consi
the following generating functional1 for the doublet of self-
and anti-self-dual models~2.1! and ~2.2!,

Z5E d fmdgmexpS i E d3xFL2~g!1L1~ f !

1
1

Am11m2

~ f m2gm!JmG D ~2.31!

where a source has been introduced that is coupled to
difference~2.10! of the variables. A relabeling of variable
as in ~2.10! is made for which the Jacobian is trivial. Th
path integral is now rewritten in terms of the redefined va
ableAm andgm ,

Z5E dAmdgmexpS i E d3xFm1

2
~Am11m2Am1gm!2

1
1

2
emnl~Am11m2Am1gm!]n~Am11m2Al1gl!

1
m2

2
gmgm2

1

2
emnlgm]ngl1AmJmG D . ~2.32!

Integrating over thegm variable yields

Z5E dAmexpS i E d3xF2
1

4
FmnFmn

1
1

2
~m22m1!emnlAm]nAl1

m1m2

2
AmAm1AmJmG D .

~2.33!

In the absence of sources this is just the partition function
the Maxwell-Chern-Simons-Proca model~2.9!. Furthermore,

1Note that the path integral following from the Hamiltonian ve
sion @5# requires the factor d@ f 01(1/m1)e i j ] i f j #d@g0

2(1/m2)e i j ] igj # in the measure to account for the constrain
Since this is a Gaussian problem the result of the path inte
remains unaltered even if these factors are not included. This is
we choose to define the basic lagrangian path integral for the
and anti-self-dual models.
8-3
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RABIN BANERJEE AND SARMISHTHA KUMAR PHYSICAL REVIEW D63 125008
the Am field in Eq. ~2.33! is related to the original double
fields by exactly the same equation~2.10!. This shows the
equivalence of the results obtained by the two approach

It is equally possible to carry out a similar analysis for
doublet of Maxwell-Chern-Simons theories. However,
gauge fixing is necessary to account for the gauge invaria
of these theories. As was shown in@5#, through the use of
master Lagrangians, the basic field in the self-dual model
be identified with the basic field in the Maxwell-Cher
Simons theory defined in the covariant gauge. We there
consider the generating functional obtained from E
~2.24!,~2.25!:

Z5E dPmdQmd~]mPm!d~]mQm!

3expS i E d3xF L2~P!1L1~Q!

1
1

Am11m2

~Pm2Qm!JmG D ~2.34!

where, as before, a coupling with an external source has b
done with the difference~2.30! of the variables. Because o
the gauge invariance of the integrand, the sourceJm should
be conserved.

To perform the path integration, a renaming of variab
according to Eq.~2.30! is done for which the Jacobian i
trivial. Then,

Z5E dAmdQmd~]mAm!d~]mQm!

3expXi E d3xF2
1

4m2
~m11m2!Fmn~A!Fmn~A!

2
1

4 S 1

m1
1

1

m2
DFmn~Q!Fmn~Q!

2
Am11m2

2m2
Fmn~A!Fmn~Q!1Am11m2emnlQm]nAl

1
1

2
~m11m2!emnlAm]nAl1AmJmGC. ~2.35!

Performing the integral over theQm variables yields

Z5E dAmd~]mAm!

3expS i E d3xF2
1

4
Fmn~A!Fmn~A!1

1

2
~m1m2!AmAm

1
1

2
~m22m1!emnlAm]nAl1AmJmG D . ~2.36!

Express the delta function in the measure by an integral o
a variablea:
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Z5E dAmda expS i E d3xFa]mAm2
1

4
Fmn~A!Fmn~A!

1
1

2
~m1m2!AmAm1

1

2
~m22m1!emnlAm]nAl

1AmJmG D . ~2.37!

Introducing a Stu¨ckelberg transformed fieldAm→Am
1(m1m2)21]ma and using the conservation of the sour
~i.e., ]mJm50) it follows that

Z5E dAmexpS i E d3xF2
1

4
FmnFmn1

1

2
~m1m2!AmAm

1
1

2
~m22m1!emnlAm]nAl1AmJmG D ~2.38!

where the integral overa has been absorbed in the norma
ization.

As before, the generating functional for the Maxwe
Chern-Simons theory with an explicit mass term is obtain
The connection of the basic fieldAm with the original dou-
blet,of course, remains the same as in Eq.~2.30!.

III. HAMILTONIAN REDUCTION AND CANONICAL
TRANSFORMATIONS

The results of the previous section were achieved in
Lagrangian formulation by combining the doublet to yie
the composite model. A complementary viewpoint will no
be presented in the Hamiltonian formulation. By solving t
constraint, the Hamiltonian of the model is expressed in te
of a reduced set of variables. Next, by means of a canon
transformation, the Hamiltonian gets decomposed into t
distinct pieces, which correspond to the Hamiltonians of
Maxwell-Chern-Simons doublet. This technique of using c
nonical transformations to diagonalize a Hamiltonian is
course well known and appears in different versions and
ferent situations. More recently, in the context of the L
grangian formalism discussed in Sec. II A, it has been de
oped in@11#. Defining a new set of parameters,

m22m15u

m1m25m2 ~3.1!

the Lagrangian~2.9! takes the form

L52
1

4
FmnFmn1

u

2
emnlAm]nAl1

m2

2
AmAm. ~3.2!

The canonical momenta are

p i5
]L
]Ȧi

52S F0i1
u

2
e i j Aj D ~3.3!

while
8-4
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p0'0 ~3.4!

is the primary constraint. The canonical Hamiltonian is giv
by

H5
1

2E d2xFp i
21

1

2
Fi j

2 1S u2

4
1m2DAi

22ue i j Aip j1m2A0
2G

1E d2xA0V ~3.5!

where

V5] ip i2
u

2
e i j ] iAj2m2A0'0 ~3.6!

is the secondary constraint. Eliminating the multiplierA0
from Eq. ~3.5! by solving the constraint~3.6! we obtain

H5
1

2E d2xFp i
21S 1

2
1

u2

8m2D Fi j
2 1S u2

4
1m2DAi

2

2ue i j Aip j G1
1

2m2E d2x@~] ip i !
22u] ip ie lm] lAm#.

~3.7!

Making the canonical transformations in terms of the n
canonical pairs (a,pa) and (b,pb),

Ai5
2m

A4m21u2
e i j

] j

A2]2
~a1b!1

1

2m

] i

A2]2
~pa2pb!

p i52
A4m21u2

4m
e i j

] j

A2]2
~pa1pb!1m

] i

A2]2
~a2b!

~3.8!

the Hamiltonian decouples into two independent pieces,

H~Ai ,p i !5H~a,pa!1H~b,pb! ~3.9!

where

H~a,pa!5
1

16m2
A4m21u2~A4m21u22u!E d2xpa

2

1
A4m21u21u

A4m21u2 E d2x~] ia!2

1m2
~A4m21u22u!

A4m21u2 E d2xa2
12500
n

H~b,pb!5
1

16m2
A4m21u2~A4m21u21u!E d2xpb

2

1
A4m21u22u

A4m21u2 E d2x~] ib!2

1m2
~A4m21u21u!

A4m21u2 E d2xb2. ~3.10!

To recast these expressions in a familiar form, a triv
scaling is done,

a2→ 1

2

A4m21u2

A4m21u21u
a2, pa

2→2
A4m21u21u

A4m21u2
pa

2

b2→ 1

2

A4m21u2

A4m21u22u
b2, pb

2→2
A4m21u22u

A4m21u2
pb

2

~3.11!

so that

H~a,pa!5
1

2E d2x@~] ia!21pa
21m1

2 a2#

H~b,pb!5
1

2E d2x@~] ib!21pb
21m2

2 b2# ~3.12!

with

m65Am21
u2

4
7

u

2
. ~3.13!

These relations show that the theory possesses two ma
modes with massm1 andm2 which satisfy the Klein Gor-
don equation. Furthermore sincem6 in Eq. ~3.13! are the
solutions to the set~3.1!, these can be identified with th
corresponding mass parameters occurring in the Maxw
Chern-Simons doublet~2.24! and ~2.25!. The above Hamil-
tonians are indeed the reduced expressions obtained
Eqs.~2.25! and~2.24!, respectively. The canonical reductio
of the Maxwell-Chern-Simons theory has been done in@2#
but we present it here from our viewpoint for the sake
completeness. Let us, for instance, consider the Lagran
~2.24!.2 The multiplierA0 enforces the Gauss constraint,

V5] ip i2
m2

2
e i j ] iAj'0 ~3.14!

where (Ai ,p i) is a canonical set. The Hamiltonian on th
constraint surface is given by

H5
1

2E d2xFp i
21

1

2
Fi j

2 1m2e i j p iAj1
m2

2

4
Ai

2G .
~3.15!

2The variable P, for convenience, is now called A.
8-5
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RABIN BANERJEE AND SARMISHTHA KUMAR PHYSICAL REVIEW D63 125008
Next, consider the canonical transformation,

Ai5
] i

A2]2
pu1e i j

] j

A2]2
b

p i5
] i

A2]2
u2e i j

] j

A2]2
pb ~3.16!

where (u,pu) and (b,pb) form independent canonical pair
Since this is a gauge theory, a gauge fixing is imposed.
take the standard Coulomb gauge,

] iAi50 ~3.17!

The presence of the gauge, together with the constr
~3.14!, modifies the canonical structure of the (Ai ,p i) fields;
i.e. their brackets are no longer canonical. The modified
gebra can be obtained either by the Dirac algorithm@12# or,
as done here, by just solving the constraints. Their solu
leads to the following structure:

Ai5e i j

] j

A2]2
b

p i52
m2

2

] i

A2]2
b2e i j

] j

A2]2
pb

~3.18!

which satisfies a nontrivial algebra,

@Ai~x!,p j~y!#5 i S 2d i j 1
] i] j

]2 D d~x2y!

@p i~x!,p j~y!#52 i
m2

2
e i j d~x2y!. ~3.19!

The same result follows by replacing the Poisson brac
by the Dirac bracket. Using Eq.~3.18! the reduced Hamil-
tonian is obtained from Eq.~3.15!,

H5
1

2E d2x@~] ib!21pb
21m2

2 b2# ~3.20!

which has exactly the same structure as the second relatio
Eq. ~3.12!. Likewise the other Maxwell-Chern-Simon
theory with a couplingm1 can be reduced to the first relatio
in Eq. ~3.12!. It might be mentioned that the two Lagrangia
~2.24! and ~2.25! differ not only in the respective mass p
rameters, but also in the signature of the Chern-Simons te
However a scaling argument shows that, apart from the fi
dependencies, these are connected bym1→2m2 . Since the
Hamiltonian is quadratic in the mass term, this sign diff
ence therefore does not affect the result.

Thus the reduced Hamiltonian of the Maxwell-Cher
Simons theory with a mass term is the sum of the redu
Hamiltonians of a doublet of Maxwell-Chern-Simons the
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ries with distinct mass parametersm6 . There is a complete
correspondence between the Lagrangian and Hamilto
formulations.

IV. THE ENERGY MOMENTUM TENSOR AND SPIN

As emphasized in@2#, spin in 211 dimensions cannot be
properly identified from only the angular momentum ope
tor since it does not conform to the conventional algebra
is essential to consider the complete energy momentum
sor. Incidentally, althougha andb in Eq. ~3.12! satisfy the
Klein-Gordon equation, these cannot be regarded as sc
due to presence of the factorA2]2 in the transformations
~3.8!. A complete analysis of the energy momentum ten
will be done which unambiguously determines the spin
the excitations. The energy momentum tensor followi
from Eq. ~3.2! is given by

Qmn52
]L

]gmn
2gmnL

52FmaFn
a1m2AmAn

1
1

4
gmnFabFab2

m2

2
gmnAaAa. ~4.1!

The discussion of the Hamiltonian has already been do
The momentum is given by

Pi5E d2xQ0i5E d2x~2F0 jFi
j1m2A0Ai !. ~4.2!

To pass over to the reduced variables,A0 is first eliminated
by using the constraint~3.6!. Next, the canonical transforma
tions ~3.8! and~3.11! are applied. This leads to the diagon
form,

Pi5E d2x@pa] ia1pb] ib#. ~4.3!

The rotation generator is given by

Mi j 5E d2x@xiQ0 j2xjQ0i # ~4.4!

which, following the same techniques, is put in the diago
form,

Mi j 5E d2x@~xipa] ja2xjpa] ia!

1~xipb] jb2xjpb] ib!#. ~4.5!

Both the translation and rotation generators have their
pected forms with the fieldsa andb transforming normally.
Using the inverse transformation of Eq.~3.8! it is seen that
the original fieldAi also transforms normally,

@Aj ,Pi #5 i ] iAj
8-6
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@Ak ,Mi j #5 i ~xi] jAk2xj] iAk2d ikAj1d jkAi !.
~4.6!

Finally, the boosts are considered and it is found that
diagonal form is given by

M0i5tE d2xQ0i2E d2xxiQ00

5tE d2xpa] ia2
1

2E d2xxi@~] ja!21pa
21m1

2 a2#

1m1e i j E d2xpaS ] j

]2D a1tE d2xpb] ib

2
1

2E d2xxi@~] jb!21pb
21m2

2 b2#

2m2e i j E d2xpbS ] j

]2D b. ~4.7!

The boost generator has extra factors which clearly show
a andb do not transform as scalars. These extra pieces
however essential to correctly reproduce the usual trans
mation of the original vector fieldAi ,

@Aj ,M0i #5 i ~ t] iAj2xi]0Aj1d i j A0! ~4.8!

where recourse has to be taken to the solution of the c
straint ~3.6! to obtain the final structure involvingA0.

The presence of the abnormal terms in the boost lead
a zero momentum anomaly in the Poincare´ algebra,

@M0i ,M0 j #5 i ~Mi j 1e i j D! ~4.9!

where

D5
m1

3

4p
S E d2xa D 2

1
m1

4p
S E d2xpa D 2

2
m2

3

4p
S E d2xb D 2

2
m2

4p
S E d2xpb D 2

. ~4.10!

Following exactly the same steps as in@2# it is possible to
remove this anomaly, simultaneously fixing the spin of t
excitations. Consider the mode expansions,

a~x!5E d2k

2pA2v~k!
@a~k!e2 ik•x1a†~k!eik•x#

b~x!5E d2k

2pA2v~k!
@b~k!e2 ik•x1b†~k!eik•x#

~4.11!

suitably modified by the phase redefinitions,

a→e2 ifa, b→eifb ~4.12!

where
12500
e

at
re
r-

n-

to

e

f5tan21S k2

k1
D . ~4.13!

It leads to the following expressions for the boosts and ro
tion generator:

M0i5
i

2E d2kv~k!ua†~k! ]J ia~k!u

1e i j E d2k
1

v~k!1m1
kja

†~k!a~k!

1
i

2E d2kv~k!ub†~k! ]J ib~k!u

2e i j E d2k
1

v~k!1m2
kjb

†~k!b~k! ~4.14!

Mi j 5e i j S E d2ka†~k!
1

i

]

]f
a~k!

2E d2ka†~k!a~k! D
1e i j S E d2kb†~k!

1

i

]

]f
b~k!

1E d2kb†~k!b~k! D ~4.15!

which satisfy the Poincare´ algebra

@M0i ,M0 j #5 iM i j . ~4.16!

An inspection of the rotation generator shows that it co
prises of two distinct terms denoted by the parentheses.
first factor in each corresponds to the usual orbital part. T
additional pieces show that the spin of the excitations as
ciated witha andb are, respectively,21 and11. This also
happens in the case of the Maxwell-Chern-Simons the
@2#. The difference from the spin of the excitations in th
Maxwell-Chern-Simons theory is noteworthy. There the s
of the spin is fixed by the sign of the coefficient of th
Chern-Simons parameter. In the present case it is seen
Eq. ~3.13! that, irrespective of the sign ofu, the mass pa-
rametersm6 are always positive. Hence the sign of the sp
associated witha andb is also uniquely determined.

Note that form15m2 , the theory becomes parity con
serving. This is the case when the Maxwell-Chern-Simo
doublet with identical mass yields the Proca model@7,8#.

V. APPLICATION TO 3D BOSONIZATION

Bosonization in higher dimensions is neither complete
exact as in the case of two space-time dimensions. Thi
related to the fact that the fermion determinant in dimensi
greater than two cannot be exactly computed. In genera
has a nonlocal structure. However, for the large ferm
mass limit in three space-time dimensions, a local expres
emerges@2,13#. This has been exploited to discuss t
8-7
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bosonization of massive fermionic models in the long wa
length limit @14#. Here we analyze the bosonization of a do
blet of such models: To be specific, consider the followi
three dimensional massive Thirring models:

L15c̄~ i ]”1m1!c2
l1

2

2
~ c̄gmc!2

L25x̄~ i ]”2m2!x2
l2

2

2
~ x̄gmx!2. ~5.1!

The respective partition functions, after eliminating t
four fermion interaction by introducing auxiliary fields, a
given by

Z15E dcdc̄d fmexpXi E d3xS c̄~ i ]”1m11l1 f” !c

1
1

2
f m f mD C

Z25E dxdx̄dgmexpXi E d3xS x̄~ i ]”2m21l2g” !x

1
1

2
gmgmD C. ~5.2!

The fermion determinant can be expressed, in the la
mass limit, by a local series involving (]/m) @2,13,15#. Fur-
thermore, for weak coupling we need to consider only
two legs fermion loop. The leading long wavelength term
this quadratic approximation is the Chern-Simons th
form. Thus the effective bosonized Lagrangians of the d
blet are given by

L15
l1

2

8p
emnl f m]n f l1

1

2
f m f m1OS 1

mD
L252

l2
2

8p
emnlgm]ngl1

1

2
gmgm1OS 1

mD
~5.3!

where the difference in the sign of the Chern-Simons piec
a result of a similar feature in the mass terms of the origi
Lagrangians~5.1!.

Using our previous results, the doublet ofL1 andL2 , as
defined in Eq.~5.3!, can be represented by an effective L
grangian, which is just the Maxwell-Chern-Simons theo
with an explicit mass term,

L52
1

4
FmnFmn~A!1

2p

l1
2 l2

2 ~l1
2 2l_22!emnlAm]nAl

1
8p2

l1
2 l2

2
AmAm ~5.4!

where
12500
-
-

e

e

e
-

is
l

-

Am5
l1l2

A4p~l1
2 1l2

2 !
~ f m2gm!. ~5.5!

The Lagrangian~5.4! can be regarded as a bosonized L
grangian obtained from the following massive Thirrin
model:

L5C̄~ i ]”2m!C2
l2

2
~C̄gmC!2 ~5.6!

in the weak coupling and large mass limit. The relations
the parameters occurring in the above Lagrangian and
~5.4! are given by

m5
8p

3

~l1
2 2l2

2 !

l1
2 l2

2

l25l2
2 2l1

2 . ~5.7!

To show this we first observe that the original weak co
pling involving l1 andl2 leads to a weakl. Secondly, it
also implies the large mass limit. In other words the sa
approximation prevails. The fermion determinant, similar
Eq. ~5.3!, but evaluated to the next to leading order, includ
both the Chern-Simons term and the Maxwell term@15#.
Specifically, this is written as

L5
1

2
AmAm2

l2

8p
emnlAm]nAl

1
l2

24pm
FmnFmn1OS 1

m2D ~5.8!

where we have identified the auxiliary field necessary to s
plify the four fermion interaction withAm . This is exactly in
keeping with the spirit of obtaining Eq.~5.3! from Eq. ~5.2!,
except that the fermion determinant has been evaluated to
next to leading order in the inverse mass expansion. By m
ing the following scaling:

Am→ 4p

l1l2
Am ~5.9!

this reproduces Eq.~5.4!, with the identification~5.7!. This
establishes the connection between Eqs.~5.1! and~5.6! since
Eq. ~5.4! is their common origin.

The implications of the above analysis are now discuss
In the quadratic approximation, a doublet of mass
Thirring models in the leading long wavelength lim
bosonizes to the effective Lagrangian~5.4!. The same effec-
tive theory, under similar approximations and with the ide
tification ~5.7!, also characterizes a single massive Thirri
model, but where the calculation of the fermion determin
is carried out till the first nonleading term. In this sens
therefore, a doublet of massive Thirring models can be
proximated by a single similar model. There is also a mat
ing in the degree of freedom count.
8-8
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VI. CONCLUSIONS

We have considered the description of a doublet of s
dual models with distinct topological mass parameters h
ing opposite signs. The difference in sign implies that
doublet comprises a self-dual and an anti-self-dual mo
Specifically, this was a pair of the gauge invariant Maxwe
Chern-Simons theory@2# or, equivalently, its dual gaug
variant version@3–5#. The effective theory, characterizin
such a doublet, turned out to be the Maxwell-Chern-Sim
theory with an explicit mass term. The basic field of t
effective theory was just the difference of the doublet va
ables.

A canonical analysis of the effective theory was don
Based on a set of canonical transformations, the Hamilton
was diagonalized into two separate pieces. The two mas
modes were found to be a combination of the topological
explicit mass parameters. In fact these were identified w
the two modes of the Maxwell-Chern-Simons doublet t
led to the effective theory. In this way a correspondence w
established between the Lagrangian approach of combi
the doublet into an effective theory and the Hamiltonian
proach of decomposing the latter back into the doublet. T
spin of the excitations was obtained from a complete st
of the Poincare´ algebra by adopting the method advocated
@2#.

When the Maxwell-Chern-Simons doublet has identi
topological mass6m, parity is conserved since one degr
of freedom is just mapped to the other. The spin carried
the two degrees of freedom is71. This has the same kine
matical structure as the Proca theory which is a parity c
serving theory with two massive modes having spin71
@16,2#. An explicit demonstration of this was provided earli
et

12500
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@7,8#. This result is reproduced here by puttingm15m2 .
For the more general case where the Maxwell-Che

Simons doublet has different topological massesm6 , parity
is no longer conserved, although the other considerations
main valid. Hence the kinematics of such a doublet
sembles a non gauge parity violating theory with two m
sive modes having spin71. This turned out to be the
Maxwell-Chern-Simons theory with an explicit mass ter
as elaborated here in details. An added bonus of this equ
lence is that it led to fresh insights into the bosonization
massive fermionic models. This was explicitly shown for
doublet of massive Thirring models, but it can be done
other examples like QED in three dimensions.

Recently there have been certain discussions@17,18#
which regard a mass term in a gauge theory either as a
ventional mass term or, equivalently, as a gauge fixing te
In fact, Maxwell theory in the covariant gauge and the Pro
model were shown equivalent from the viewpoint of qua
tum Becchi-Rouet-Stora-Tyutin~BRST! symmetry @17,18#.
Here we find that the superposition of a pair of Maxwe
Chern-Simons theories in the covariant gauge leads to
explicit mass generation. This suggests a possible connec
between these different approaches.

The extension of these findings to higher dimensions
non-Abelian versions would be welcome. Of course fork
21 dimensions where self-duality is definable, this exte
sion is straightforward in the Abelian case. For non-Abeli
theories, the superposition principle does not work as in
Abelian theory. Using some special properties of two dime
sions, the Wess-Zumino-Witten~WZW! non-Abelian dou-
blet was treated in@19#. But for general dimensions, the non
Abelian analysis remains an open issue.
.
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